Search results for "Fixed Points"

showing 10 items of 29 documents

Common fixed points in cone metric spaces for $MK$-pairs and $L$-pairs

2011

In this paper we introduce some contractive conditions of Meir-Keeler type for a pair of mappings, called $MK$-$pair$ and $L\textrm{-}pair$, in the framework of cone metric spaces and we prove theorems which assure existence and uniqueness of common fixed points for $MK$-$pairs$ and $L \textrm{-}pairs$. As an application we obtain a result of common fixed point of a $p$-$MK$-pair, a mapping and a multifunction, in complete cone metric spaces. These results extend and generalize well-known comparable results in the literature.

$MK$-pairCommon fixed points.Settore MAT/05 - Analisi Matematica$L$-pairCone metric space
researchProduct

Stochastic sensitivity of bull and bear states

2021

We study the price dynamics generated by a stochastic version of a Day–Huang type asset market model with heterogenous, interacting market participants. To facilitate the analysis, we introduce a methodology that allows us to assess the consequences of changes in uncertainty on the dynamics of an asset price process close to stable equilibria. In particular, we focus on noise-induced transitions between bull and bear states of the market under additive as well as parametric noise. Our results are obtained by combining the stochastic sensitivity function (SSF) approach, a mixture of analytical and numerical techniques, due to Mil’shtein and Ryashko (1995) with concepts and techniques from th…

CRITICAL INTENSITYEconomics and EconometricsVDP::Samfunnsvitenskap: 200::Økonomi: 210::Samfunnsøkonomi: 21205 social sciencesAsset marketNON-SMOOTH MAPSType (model theory)01 natural sciencesNON-INVERTIBLE MAPS010305 fluids & plasmasNoiseSTOCHASTIC PRICE PROCESSTRANSITIONS BETWEEN STOCHASTIC FIXED POINTS0502 economics and business0103 physical sciencesEconometricsSensitivity (control systems)Asset (economics)050207 economicsBusiness and International ManagementSTOCHASTIC SENSITIVITY FUNCTIONFocus (optics)Parametric statisticsMathematicsJournal of Economic Interaction and Coordination
researchProduct

Fixed points in weak non-Archimedean fuzzy metric spaces

2011

Mihet [Fuzzy $\psi$-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems, 159 (2008) 739-744] proved a theorem which assures the existence of a fixed point for fuzzy $\psi$-contractive mappings in the framework of complete non-Archimedean fuzzy metric spaces. Motivated by this, we introduce a notion of weak non-Archimedean fuzzy metric space and prove that the weak non-Archimedean fuzzy metric induces a Hausdorff topology. We utilize this new notion to obtain some common fixed point results for a pair of generalized contractive type mappings.

Common fixed points Weak non-Archimedean fuzzy metric spaces Fuzzy contractive mappingsDiscrete mathematicsFuzzy classificationMathematics::General MathematicsLogicInjective metric spaceT-normFuzzy subalgebraIntrinsic metricConvex metric spaceComputingMethodologies_PATTERNRECOGNITIONSettore MAT/05 - Analisi MatematicaArtificial IntelligenceFuzzy set operationsFuzzy numberComputingMethodologies_GENERALMathematicsFuzzy Sets and Systems
researchProduct

Common fixed point theorems of integral type for OWC mappings under relaxed condition

2017

In this paper, we prove a common fixed point theorem for a pair of occasionally weakly compatible (owc) self mappings satisfying a mixed contractive condition of integral type without using the triangle inequality. We prove also analogous results for two pairs of owc self mappings by assuming symmetry only on the set of points of coincidence. These results unify, extend and complement many results existing in the recent literature. Finally, we give an application of our results in dynamic programming.

Common fixed points Weakly compatible mappings Occasionally weakly compatible mappings Contractive condition of integral type Symmetric spacesSettore MAT/05 - Analisi Matematica
researchProduct

Some common fixed point theorems for owc mappings with applications

2013

Starting from the setting of fuzzy metric spaces, we give some new common fixed point theorems for a pair of occasionally weakly compatible (owc) self-mappings satisfying a mixed contractive condition. In proving our results, we do not need to use the triangular inequality. Also we obtain analogous results for two pairs of owc self-mappings by assuming symmetry only on the set of points of coincidence. These results unify, extend and complement some results existing in the literature. Finally, we give some applications of our results.

Common fixed points functional equations fuzzy metric spaces occasionally weakly compatible mappings product spaceSettore MAT/05 - Analisi Matematica
researchProduct

Nonlinear quasi-contractions of Ciric type

2012

In this paper we obtain points of coincidence and common fixed points for two self mappings satisfying a nonlinear contractive condition of Ciric type. As application, using the scalarization method of Du, we deduce a result of common fixed point in cone metric spaces.

Common fixed points quasi-contractions scalarization cone metric spaces.Settore MAT/05 - Analisi Matematica
researchProduct

$varphi$-pairs and common fixed points in cone metric spaces

2008

In this paper we introduce a contractive condition, called $\varphi \textrm{-}pair$, for two mappings in the framework of cone metric spaces and we prove a theorem which assures existence and uniqueness of common fixed points for $\varphi \textrm{-}pairs$. Also we obtain a result on points of coincidence. These results extend and generalize well-known comparable results in the literature.

Cone metric spaces \and $\varphi$-pairs \and Common fixed points \and Coincidence pointsPure mathematicsGeneral MathematicsInjective metric spaceMathematical analysisFixed pointIntrinsic metricConvex metric spaceMetric spaceCone (topology)Settore MAT/05 - Analisi MatematicaMetric (mathematics)Metric mapMathematics
researchProduct

Common fixed points in cone metric spaces for CJM-pairs

2011

Abstract In this paper we introduce some contractive conditions of Meir–Keeler type for two mappings, called f - M K -pair mappings and f - C J M -pair (from Ciric, Jachymski, and Matkowski) mappings, in the framework of regular cone metric spaces and we prove theorems which guarantee the existence and uniqueness of common fixed points. We give also a fixed point result for a multivalued mapping that satisfies a contractive condition of Meir–Keeler type. These results extend and generalize some recent results from the literature. To conclude the paper, we extend our main result to non-regular cone metric spaces by using the scalarization method of Du.

Cone metric spaces CJM-pairs Common fixed points Common coincidence points.Injective metric spaceMathematical analysisMathematics::General TopologyFixed pointComputer Science ApplicationsIntrinsic metricConvex metric spaceCombinatoricsMetric spaceCone (topology)Settore MAT/05 - Analisi MatematicaModeling and SimulationUniquenessCoincidence pointMathematicsMathematical and Computer Modelling
researchProduct

Invariant approximation results in cone metric spaces

2011

‎Some sufficient conditions for the existence of fixed point of mappings‎ ‎satisfying generalized weak contractive conditions is obtained‎. ‎A fixed‎ ‎point theorem for nonexpansive mappings is also obtained‎. ‎As an application‎, ‎some invariant approximation results are derived in cone metric spaces‎.

Control and OptimizationAlgebra and Number TheoryInjective metric spaceTangent coneMathematical analysis‎non normal cone‎54C60‎54H25‎‎orbitally continuous‎cone metric spacesIntrinsic metricConvex metric spaceFixed pointsMetric space‎46B40Dual cone and polar coneSettore MAT/05 - Analisi MatematicaMetric map‎invariant‎ ‎approximationInvariant (mathematics)Fixed points orbitally continuous invariant approximation cone metric spaces non normal cone.47H10AnalysisMathematics
researchProduct

On fixed points of the Burrows-Wheeler transform

2017

The Burrows-Wheeler Transform is a well known transformation widely used in Data Compression: important competitive compression software, such as Bzip (cf. [1]) and Szip (cf. [2]) and some indexing software, like the FM-index (cf. [3]), are deeply based on the Burrows Wheeler Transform. The main advantage of using BWT for data compression consists in its feature of "clustering" together equal characters. In this paper we show the existence of fixed points of BWT, i.e., words on which BWT has no effect. We show a characterization of the permutations associated to BWT of fixed points and we give the explicit form of fixed points on a binary ordered alphabet a, b having at most four b's and th…

Discrete mathematicsAlgebra and Number TheoryBurrows–Wheeler transformSettore INF/01 - InformaticaPermutationPermutations0102 computer and information sciences02 engineering and technologyInformation SystemFixed point01 natural sciencesTheoretical Computer ScienceComputational Theory and Mathematics010201 computation theory & mathematicsFixed PointFixed Points0202 electrical engineering electronic engineering information engineeringBurrows-Wheeler Transform; Fixed Points; Permutations; Theoretical Computer Science; Algebra and Number Theory; Information Systems; Computational Theory and Mathematics020201 artificial intelligence & image processingBurrows-Wheeler TransformInformation SystemsMathematics
researchProduct